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ABSTRACT

Several methods of transition prediction by linear

stability analysis are compared. The spectral stability

analysis code SALLY is used to analyze flow_ over laminar

flow control wings. It is shown that transition prediction

by the envelope v'thod and a new modified wave packet method

are comparable in reliability but that the envelope m_thod

is more efficient computationally.
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NOMENCLATURE

A

a
n

c

L

N

R

Re
c

T

U

U
P

U
X

U
_e

V
g

V'

W

W

X

Y

maximum disturbance amplitude

Chebyshev coefficients

wing chord

dimensional frequency

wave number vector

algebraic mapping parameter

N-factor _ In A/A O

displacement thickness ReyncIds number, Ux6 /u

chord Reynolds number, U c/v

arc length along an arbitrary path on the wing

Chebyshev polynomial

time

unperturbed x-velocity in the boundary layer

potential flow vector at edge of boundary layer

x-component of 0
P

incoming free stream velocity

group velocity vector

perturbation velocity in the y-direction

unperturbed z-velocity in the boundary layer

mapped coordinate normal to wina surface

coordinate in the direction of the normal chord

coordinate normal to the wing surface

coordinate along the wing span
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Q

_A

B

W

_g

qJp

q

x-w_ve number

angle of attack

z-wave number

frequency (complex)

frequency (real)

displacement thickness

wave length

kinematic viscosity

wing sweep angle

apgle formed by the wave number vector with the x-axis

angle formed by the group velocity vector with the x-axis

angle formed by the p_tential flow vector with the x-axis

eigenfunction; defined in Eq. (3).

adjoint of the e: _nfunction
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SECTION I - INTRODUCTION

In this report several methods of transition prediction

using linear stability analysis are compared. The incompress-

ible linear stability computer code SALLY is used in various

ways to study three-dimensional boundary layer flow over

laminar flow control (LFC) wings. Here we compare the so

called envelope method I with wave-packet methods 2, to predict

transition. We conclude that the envelope method is at least

as reliable as the more complicated and less efficient wave

packet method.

Consider the stability of three dimensional laminar flow

over swept wings with sweep angle 6. The coordinate system

used on the wing is depicted in Fig. i. The x-axis is in the

direction of the normal chord, the y-axis is normal to the

surface of the wing while the z-axis is along its span.

Neglecting the curvature of the wing surface, compressi-

bility effects, and non-parallel flow effects, linear distur-

bances satisfy the Orr-Sommerfeld equation

d 2 2 2@
(a-_- _ - B2)

= iR { (aU + 8W - _) [ --_ - a - 1_ - ( + 8 1_} 11)
dy dy dy
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with the boundary conditions

(o) = _ (o) = o; 4,(®) i:x_undcd. (2)

Here the perturbation velocity in the y-direction is assumed

to be of the form

v' = Re[_(y)ei(ax+_z-_t)], (3)

U(y) and W(y) are the (unperturbed) laminar boundary

layer velocities in the x- and z-directions, respectively,

and R is the Reynolds number. It _s assumed that all

variables are non-dimensionalized with boundary layer

scaling.

Equations (i) - (3)

problem for the frequency

For given Reynolds n_amber

constitute an eigenvalue

and wavenumbers u,8 .

R, this eigenualue problem

provides a complex dispersion relation of the form

(4)

relating the complex parameters e,8 and _.

1-2
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Semi-empirical methods to predict transition on

LFC wings are based on tracing the evolution of modes
1

across the wing. An appropriate N-factor for transition

correlation is defined as the (logarithm of the) total

growth factor across the wing (see below). A good transition

predictor is one for which transition occurs at nearly constant

N =.or a wide variety of wings and flow conditions.

For natural transition, disturbances of all frequencies

are present on the wing surface. In this case, there are

many optional ways to compute N factors. The first choice

is between temporal and spatial stability theory. In

temporal theory, u and 8 are real while _ is complex;

the mode grows in time if Im(_) > 0, but the mode does

An N-factor for transition correlationnot grow in space.

may be defined as

iSN = zm( )/IRe( g) Ids (5)
s o

where Vg =(_/_, _/_B) is the (complex) group velocity

and s is the arclength along an appropriate curve on the wing.

The N-factor (5) is not fully defined until a prescription

is given for singling out a specific mode at each position

on the wing and for defining a specific curve on which to

integrate. We shall return to these questions in Sec. 2.

In spatial stability theory, _ is real but a and/or

8 may be complex. Again, there is arbitrariness in the

definition of an appropriate N-factor because of the variety

of excitable modes on the wing.
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SECTION 2-

WAVE PROPAGATION IN BOUNDARY LAYERS

The complex eigenvalue relation (4) provides

two real relations among the three complex quantities

_,8, and _. In temporal stability theory, the

requirements that e and 8 be real provide two more

conditions so there remain two arbitrary parameters

among Re(e), Re(_), Re(w), and Im(m}.

There are several ways to remove this arbitrariness

in the computation of the growth factors N. In the

envelope method I, _m(_) is maximized with respect

to s at fixed Re a [which then determines u,8

and _ uniquely at each ._.int on the wing] and the

curve in (5) is defined to be everywhere tangent

to Re(_g).

With spatial stability theory, there remain

three independent real parameters among e,8 and

Re(u) once the eigenvalue condition (4) is satisfied.

One possibility is to require that the direction of

most rapid growth, which is parallel to the vector

(-Im(a), -Im(8)), be parallel to Re(Vg) and that

the resulting value of the most rapid growth rate

be maximized with respect to the remaining two

3
independent parameters.

Alternatively, it is possible to use wave

2-i
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packet theory to remove the arbitrariness in the definition

of N-factors. For a conservative dynamical system,

kinematic wave theory implies that a wave packet

propagates in physical and wavevector space according

4

to the Hamilton-Jacobi equations

d.__.x= ___ (6)
dt _

d-! = _-_ (7)
dt _8

de _ _ (8)
dt _x

d8 =_ ___ (9)
dt _z

'%

2

Nayfeh considered the extension of Eqs. (6)-

(9) to non-conservative systems where _,8, and _ can

be complex. Then, _ and _8 may also be complex.
%

For a physical solution with real x,z, and t to

e'xist, (6) and (7) imply that the group velocity

i

(_ ,_8) must be real. Nayfeh proposed the computation

of'.wave packet solutions determined by the six independent
%

conditions: (i) the eigenvalue condition (4);

(ii) Im _ = Im _8 = 0; (iii) Re _ fixed; (iv)
'b

Re 8 $ixed; and (v) dx/dt =_ dz/dt = _8" Under

these conditions the N-factor is determined by



z

t

t o

[-_ Im(_)-_8Im(B)+Im(_)]dt (10_

Finally we study a modified non-conservative wave

packet formulation in which a,8, and _ are

determined by: (i)

(ii) Im _u =Im _8= 0;

the eigenvalue condition (4);

(iii) Re_ fixed with Imp= 0;

and (iv) dx/dt = _ , d z/dt = m8 " The motivation for

these latter conditions is simply that laminar flow

over a LFC wing may be assumed steady so a wave packet

should propagate at fixed real frequency. The N-

factor is given by (!0) with Im(m) = 0.

Calculations made with Nayfeh's formulation of

the wave packet equations were extzemely sensitive

and gave transition prediction at highly variable and

unpredictable values of the N factor. Therefore, we

report in Sec. 4 only the results obtained by our

modified wave packet formulation in which the condition

Re 8 fixed is dropped in favor of Im _= 0.
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SECTION 3 - NUMERICAL METHOD

In the computer code SALLY I, Eqs. (I) - (2) arc solved

using a spectral method based on Chebyshev polynomials 5. The

boundary layer direction y 0 _ y < _, is mapped into the finite

interval -i _ w < 1 by the algebraic mapping

Y

w = 2 y+L 1 (Ii)

and _(y) is approximated as the finite Chebyshev _olynomial

series

M

(y) = Z a T (w) (12)
n= 0 n n

The resulting algebraic eiqenvalue problem is solved globally

(if a guess for the eigenvalue is not available) by a generalized

QR algorithm or locally (if a good guess is available) by inverse

Rayleigh iteration 6. The resulting scheme is very efficient

and accurate.

Group velocity (Vg = _)
_k can be calculated using the adjoint

eigenfunction ol the Orr-Sommerfeld equation. Thus if the Orr-

Som_,erfeld equation is written as

L(k, ×, _( ) _ = 0 (13)

then the differentiation with respect to wave number k gives

i_qb

_k _ _k _k
(14)
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Taking the inner product of (14) with the adjoint n of

the eigenfunction % gives

_L
(n,-_ _)

_m _ _k (15)

_L
ak (n, _-j_)

In order to correlate transition we calculate N-factor fo1"

a fixed real frequency and repeat the calculations for several

other frequencies to find the most dangerous mode. The eigen-

value solver in SALLY 1 searches for the eigenvalue w given e

and 8- So we iterate on Re _, Im _, Re B and Im B such that

the conditions described above for modified wave packet method

are satisfied, This is achieved usually in three iterations.

Following equations are employed in this iterative process.

Im w Re _o Im m 8 Re web

Im wS_ Re wB_ Im wSB Re wSB

-Ira m Re m 8 -Im w BRe w e s,

Im m Re w Im _B Re {08

Re (e-s O )

Im (m-e ° )

Re ( B-B o)

Im (S-8)
o

-Im m
c_

-Ira co B

Re(_-to)

-Im(w)

(16)

The properties of the laminar boundary layer profiles

required to solve (i) - (2) are obtained using a compressible

boundary layer code for swept tapered wings developed by Kaups

and Cebeci I.
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SECTION 4-

RESULTS

7
Burrows ha_ reported flight transition data

taken at Cranfield for a large, untapered, 45 ° swept

half wing mounted as a dorsal fin upon the mid-upper

fuselage of a_ Avro Lancaster airplane. The airfoil

section was made-up of two semi-ellipses_ one of which

constituted a faired trailing edge and the oth r

corresponding to the _eading edge of a i0 percent

thick airfoil: with effective chord of 10.83 feet,

_easured in the free stream direction. The location

of the be_iinning of transition in the Cranfi_Id data

was estimated as given in Ref. 8 . Two of the Cranfield

flight tests were chosen for correlating transition

using wave packet theory.

In the first test case, calculations were made

for a chord Reynold_ number of 11.7 × 106 and -2 °

angle of attack_ In this flow_ transiLi_n begins at

x/c = 5.5%. A maximum N factor of 7.6 was obtained

at a frequency of 1250 Hz both with the envelope

method and the modified wave packet method.

The predicted variation of the N factor up

to the transition locAiion was almost identical for the

envelope method and the modified wave packet method.

We also compute the solution of the conservative wave

packet equations (6) - (_) zn which only the real

parts of equations (6) - (2) are taken while (8)-(9)

4-1



are solved in their full complex form. The resulting

N factor at transition is 5.2. _he variation of N

fartor with x/c for the various methods is plotted

in Fig. 2.

Wave angle, wave length and the direction of

the group velocity as predicted by the envelope and

wave packet methods are given in Figs. 3- 5. Although

the results are qualitatively similar, the_e is

appreciable quantitative difference in these parameters

at the transition location. It is surprising that the

N factor calculated by the envelope and modified wave

packet methods are the same.

In the second test case, the angle of attack

of the wing was changed to zero. In this case,

transition occurred experimentally at x/c = 7%.

The envelope method gave an N factor of 10.8 at

a frequency of i000 Hz. The wave packet method gave

a maximum N factor of 10.5 at a frequency of

1200 Hz, which is close to the predictiQn of the

envelope method. The variation of N factor with

x/c is plotted in Fig. 6. The predictions of the

conservative wave packet approximation and a fixed

wavelength, fixed frequency integration are also

plotted in this figure.

approximation gave an N

8.6 rather than 10.5.

The conservati_,e wave packet

factor at transition of

4_2



Figure 7 shows the influence of frequency

on N factor at transition for the wing as

predicted by the wave packet theory. Wave angle,

wave length and direction of the group velocity

for this particular wing are shown in Figs. 8-10.

Again there is substantial quantitative difference in

the predictions of the two methods.

4-3
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SECTION 5 - CONCLUSIONS

Calculations were made for a Cranfield 45 ° swept wing

with Re = 11.7 x 106 using a modified wave packet method and
c

the envelope method. Both methods gave an N factor of 7°6 at

transition locatic_ for an angle of attack, e A = - 2° . For

e A = 0 °, the envelope and modified wave packet methods gave N

factors of 10.8 and 10.5, respectively. Since it may be argued

that the wave packet method is physically more relevant for pre-

dicting transition in three dimensional boundary layers, it was

initially hoped that the wave packet method might give more con-

sistent transition N factors. However, the results show that

the wave packet method provides N factors which are at best as

consistent as those of envelope method. Since the wave packet

method is at least 3 times as expensive to use as the envelope

method, the latter is recommended for engineering design cal-

culations.

We would like to thank D. M. Bushnell and J. N. Hefner for

helpful discussions. This work was supported by the National

Aeronautics and Space Administration under Contract NASI-15604
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FIGURE CAPTIONS

Figure I. A plot of the coordinate system on a swept

wing.

Figure 2. A plot of N versus percent of chord

x/c for various methods applied to a swept wing

of an Avro Lancaster airplane at -2 ° angle of

attack. Solid curve: modified wave packet method

and envelope method at f = ]250 Hz which %ires nearly

the maximum N at the transition point. Dashed

curve: result of integrating equations (6) - (9)

across the wing with (6) and (7) replaced by

their real parts. The curves are plotted from the

beginning of the unstable flow region until the

transition point at x/c = 5.5%.

Figure 3. A plot of wave propagation angle versus

x/c for the same flow as in Figure 2.

Figure 4. A plot of wavelength versus x/c for the

same flow as in Figure 2.

Figure 5. A plot of the direction of the group velocity

for the same flow as in Figure 2.

Figure 6. Same as Fig. 2 except for the wing at 0 °

angle of attack. In addition to the results of the

wave packet methods and envelope method0 the N

7-i
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factor obtained by integrating a fixed

wavelength, fixed frequency mode across the wing is

given. Here N is given by (5) and the mode is

determined by the six real conditions: (i) F _4);

(ii) Im _= Im _ = 0; (iii) I/c = 0.001; (

Re _= 750 Hz.

Figure 7. Variation of N at transition versus

frequency obtained using the modified wave

packet method for the same flow as in Figure 6.

Figure 8. A plot of wave propagation angle versus

x/c for the same flow as in Figure 6.

Figure 9. A plot of wavelength versus x/c for the

same flow as in Figure 6.

Figure I0. A plet of the direction of the group

velocity for the same flow as in Figure 6.

7-2



×

U_

Z

Up

Figure i.



8

7

6

5

4

Z

3

2

I

0

| I! |' I ' |

WAVE PACKET AND
ENVELOPE METHOD_ / _._'_

f

(f= 1250 Hz!) ._ , i _'I-

,/ //'<'CONSERVATIVE t

//" WAVE PACKET METHOD

//! iI ! I

I 2 :3 4 5

X/C %

6

Figure 2.



tOO ..

90-

80-

70-

60-

50-

40-

50-

20-

I0-

0

I I I I ' I

WAVE PACKET METHOD
..... ENVELOPE METHOD

elm

I

I I ! , I I ,
I 2 .'5 4 5 6

X/C %

Figure 3.



o_
K

O

2.5

2.0

1.5

I.O

0.5
.._ _ , WAVE PACKET METHOD

- " ------ ENVELOPE METHOD

I ..... I I I |

O I 2 3 4 5

XlC %

6

Figure 4



I0

8

6

4

2

# o
|

_.°-2

-4

-6

-8

-I0

! II l .... --u --

m

mlb

W_VE PACKET MF'THOD
------ ENVELOPE METHOD

0 I 2 5 4 5

X/C %

6

Figure 5.



0

/
o*

I

I 2

, ,i |

/

J

morn

m

J* it,

WAVE PACKET METHOD (f = I000 Hz)
WAVE PACKET METHOD (f ---i?-.OOHz)
ENVELOPE METHOD (f = IO00Hz)
CONSERVATIVE YVAVE PACKET

METHOD
FIXED WAVELENGTH AND FREQUENCY

METHOD

_t I ..... I,. .I

3 4 5 6

X/C %

Figure 6.

7

L. _

J
I



Z

I0

8

0 600 800 I000 1200

f (Hz)

Figure 7.

1400

I ,



i00 i I ! 'I

4

8O

6O

4O

__0

----.-- WAVE PACKET METHOD

---'--- ENVELOPE I_E-.-THOD

. I I ! I I

0 ! 2 3 4 5 6 7

X/C %

Figure 8.



3O

Z.5

Z.O

1.5

i.0

0.5 WAVE PACKET METHOD
------ ENVELOPE METHOD

., .... ,I ..... I ......... I i. ,

0 I 2 3 4

X/C %

,,I ....... i

5 6 7

Figure 9.

..... -',t



I0

8

6

4

2

0

A

""' I I ' I I I I

I

-6 -

-I0 -
WAVE PACKET METHOD

------ ENVELOPE METHOD

l I .... I ) i

0 I 2 3 4

X/C %

........ I ...... I ......
5 6 7

Figure i0.


